Contractual Data

- Contract Nr. IST-2004-027178-VISP
- Project Name: Virtual Internet Service Provider
- Short Name: VISP
- Total Budget: 3,478,706.00 €
- EU Funding: 1,972,400.00 €
- Duration of the project: 32 Months
- Start of the project: 1 Nov. 2005
- Contact point:
 Perceval Technologies SA, Brussels, Belgium
 Mr. Henri-Jean Pollet
 e-mail: coordinator.visp@perceval.net
 Tel:+32 (0)2 640 91 94
 Fax:+32 (0)2 640 31 54
 Project Website: www.visp-project.org
VISP Consortium
Consortium Partners

- 11 partners in 10 different countries among which 4 are new-entrants.

<table>
<thead>
<tr>
<th>Partic. no.</th>
<th>Participant name</th>
<th>Participant short name</th>
<th>Country</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perceval Technologies S.A.-N.V.</td>
<td>Perceval</td>
<td>Belgium</td>
<td>SME</td>
</tr>
<tr>
<td>2</td>
<td>Telscom A.G.</td>
<td>Telscom</td>
<td>Switzerland</td>
<td>SME</td>
</tr>
<tr>
<td>3</td>
<td>EoZen S.A.</td>
<td>Eozen</td>
<td>Luxembourg</td>
<td>SME</td>
</tr>
<tr>
<td>4</td>
<td>Valtech S.A.</td>
<td>Valtech</td>
<td>France</td>
<td>Industry</td>
</tr>
<tr>
<td>5</td>
<td>Uniwersytet im. Adama Mickiewicza w Poznaniu</td>
<td>UAM</td>
<td>Poland</td>
<td>Academic</td>
</tr>
<tr>
<td>6</td>
<td>Eworx E-Business Services S.A.</td>
<td>Eworx</td>
<td>Greece</td>
<td>SME</td>
</tr>
<tr>
<td>7</td>
<td>Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.</td>
<td>FhI Fokus</td>
<td>Germany</td>
<td>Academic</td>
</tr>
<tr>
<td>8</td>
<td>Metaware S.p.A</td>
<td>Metaware</td>
<td>Italy</td>
<td>Industry</td>
</tr>
<tr>
<td>9</td>
<td>Centrum Technologii Mobilnych Mobiltek sp. z o.o</td>
<td>Mobiltek</td>
<td>Poland</td>
<td>SME</td>
</tr>
<tr>
<td>10</td>
<td>Universitatea de Vest din Timisoara</td>
<td>WUT</td>
<td>Romania</td>
<td>Academic</td>
</tr>
<tr>
<td>11</td>
<td>Institute of Computer and Communication Systems</td>
<td>ICCS</td>
<td>Bulgaria</td>
<td>Academic</td>
</tr>
</tbody>
</table>
VISP Key Ideas

• Cluster of partners working collaboratively as a virtual ISP.
• Single business entity but multiple business models.
• To implement and provision ISP services to local business needs.
• Services decomposed into parameterized elements.
• To sell tailored services as a key differentiator.
• To specify service ontologies in a formal standard language.
• To support software assisted service design, description, ordering, etc.
• Business and implementation processes required to implement services.
• Processes modelled, specified and executed as workflows.
• Workflows specified at choreography and orchestration levels with standard languages.
• Workflows will be distributed, executed and monitored using standard protocols.
• Network components modelled using a standard representation.
• Services advertised internally & externally.
Project Structure
Workpackage Structure

WP1: VISP business modelling

WP4: VISP service modelling

WP5: VISP business process modelling

WP6: VISP implementation process modelling

WP7: VISP validation platform architecture

WP8: VISP validation platform implementation

WP9: VISP validation

WP10: VISP dissemination & exploitation

WP2: Business workflow technology analysis & comparison

WP3: VISP functional architecture

WP11: VISP project management
Project Objectives
Main Objectives

The main objective of the VISP project is to develop a software platform enabling a cluster of SMEs to operate as a single business entity, in multiple dynamic business models, for the production of tailored Internet Service Provider (ISP) solutions adapted to local business needs. This objective will be achieved by addressing multiple sub-objectives such as identifying business models, assessing workflow technologies, modelling ISP services, modelling cluster business processes, modelling implementation and provisioning processes, implementing a modelling platform linked to an execution platform.
Sub-Objective 1

Identify new dynamic business models for SMEs:
VISP will study business models enabling a cluster of SMEs to provide uniform services and appear and behave as a virtual business ISP by combining their resources in a dynamic and collaborative fashion.

Target business models will be selected and requirements for the rest of the project will be derived from these target business models. Three different scenarios will be addressed:
- Volume based business model
- Value added business model with service tailoring differentiation
- Provision of content based business model
Sub-Objective 2

Business Workflow technologies Analysis and Comparison

Following key workflow areas will be analysed:
- modelling methodologies,
- choreography languages,
- orchestration languages,
- communication protocols,
- workflow administration,
- monitoring and security,
- editing tools, etc…

[Diagram showing various workflow technologies and standards such as BPMN, UML, BPSS, BPML, BPEL, BPSS+, CPP/CPA, BPQL, Wf-XML, RosettaNet, OAGIS, UBL, SOAP, ASAP, and Wf-XML.]
Sub-Objective 3

ISP service decomposition and knowledge representation:

This service knowledge base will cover 7 key service classes of a business ISP:
- Access
- Bandwidth
- Network
- Hosting
- Application
- Security
- Support
Sub-Objective 4

Cluster business workflows: VISP will provide a consolidated set of realistic business workflows to accommodate the business processes that must be supported in a dynamic cluster of partners.
Sub-Objective 5

Formal service implementation and provisioning:
VISP will formalize ISP service implementation and provisioning processes as workflows.

These processes will be modelled and executed using the same technologies as for business processes.

Interfacing with network and system components, and applications would happen through mediation functions using standard network, system and application modelling.
Sub-Objective 6

Workflow modelling and specification software:
VISP will provide an integrated workflow modelling and specification platform, by integrating and customizing Open Source software.
Sub-Objective 7

Workflow execution software: VISP will provide an innovative workflow execution platform integrated with existing BSS (ERP) allowing cluster partners and their customers to manage and monitor workflows in a secured way.

The VISP workflow engine is in general external to an ERP (e.g. partners B to D).
An ERP system has an embedded workflow engine which is generally a black box

- Interoperability between workflow engines will be addressed
Sub-Objective 8

Dissemination: VISP will disseminate results by providing feedback to standardization via contributions, publishing Open Source software, publishing scientific and/or business publications, organising and participating to awareness events, setting-up further business partnerships, etc.

Website for on-line communication: www.visp-project.org

Participation in Clusters:
- Digital Ecosystems
- Entreprise Interoperability

Publications
Workshops and conferences
Contribution to standards
Open source software
VISP Innovation and Integration

VISP will combine multiple innovative technologies mainly based on XML in the field of ontologies (RDF, OWL), workflow technologies (choreography and orchestration), network modelling (WBEM, CIM), distributed directories based on LDAP (and possibly DEN), and Web services (WSDL and UDDI).

VISP will build an integrated software platform allowing automating as much work as possible in the cluster in order to validate the VISP concepts. The VISP platform will be made of a service and process modelling and specification environment linked to a distributed, secured and manageable workflow execution environment interfaced with ERPs and network systems.

VISP will contribute to standardization in multiple fields; it will extend existing standards to encompass ISP services and their implementation. It will adapt and complement existing business workflows, and specify implementation workflows as contributions in the particular business area considered by the project.
Expected Achievements

• **Exploitation**: The project partners are expected to create cluster based VISP to provide their customers with tailored services, as one of the their business portfolio. Knowledge, experience and visibility gained in the project, will allow SMEs to extend their business contacts to expand their business opportunities.

• **Standardization**: VISP will be involved in developing many innovative technologies and solutions in the fields of modelling methodologies, ontologies, workflows modelling, semantic representation, workflow formal choreography, workflow formal orchestration, provisioning automatization, OSS modelling, service modelling, service announcement and discovery, ERP integration, OSS integration, XML based languages, XML asynchronous and secured communications, innovative business, etc which will be of value to standards groups.

• **Open source diffusion**: VISP intends to distribute part of the software developed in the project as Open Source software, so that other industries can also benefit from the project results.
Acknowledgement and Disclaimer

• This project has received research funding from the European Community’s Sixth Framework Programme (FP6).

• This document reflects only the author’s views. The European Community is not liable for any use that may be made of the information contained therein.